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1 Derivation of Hypotheses

The proofs rely on the contrast between sets of nodes that enter our dataset because they

participated in the protest and nodes that enter our dataset because they were randomly

sampled from among those who were eligible but did not participate. The next section

explains why the comparison of these two differently-sampled sets is meaningful for our case

and lays out the assumptions that establish exactly when these comparisons would be useful

for future studies as well.

1.1 Setup and Working Assumptions

We begin by identifying a set of Twitter users of interest N from among the full universe

of Twitter users N . Here, N is defined to be set of Twitter users who were eligible to

participate in the Charlie Hebdo protest. For our empirical analyses, we operationalize this

definition with hashtag use and geolocation: N is the set of individuals who Tweeted with

one of the hashtags pertaining to Charlie Hebdo during the time of the protest (for whom

Charlie Hebdo was salient), and who were in Paris during the time of the protest (they were

geographically near the protest site and had geolocation activated).

Our focus will be on a small slice of the Twitter universe’s network: the network measured

outward two degrees from individuals in N .

Definition 1 (2-degree network). For a set of nodes A contained within universe of nodes

A, the 2-degree network of A is the egocentric network centered on egos A and measured

out to geodesic distance 2 from any node in A.

In other words, the 2-degree network of our eligible Twitter users N contains as nodes

everyone in N , everyone to whom they are connected in N , and everyone to whom their

connections are connected in N , and contains all links in paths of length 1 or 2 from anyone

in N . Call the 2-degree network of N “G.”

Our approach is to collect two subsets of N , each according to a different rule, and

compare the subnetworks of G that are induced by the subsets in order to learn something

about the collection rules. Here we lay out the necessary assumptions and logic underlying

these comparisons.

Let P and C be two subsets of N . Our hypotheses pertain so long as subsets are small

relative to N and are similar in size.1

1The reason for these assumptions will be clear below. As a brief preview, if P Y C “ N , then the
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Assumption 1: P and C are the same size. That is,

|P | “ |C|.

Assumption 2: The size of P and the size of C are small relative to the size of N . That

is, at a minimum,

|P Y C| ă |N |.

The greater the difference between |P Y C| and |N |, the starker our results will be.

Finally, our focus will be on differences in the networks among those in P and those in C,

so some labels will be useful:

Definition 2. Call gP and gC the 2-degree subnetworks of G induced by P and C, respec-

tively.

Each of gP and gC is a 2-degree network centered around egos P and C, respectively,

and is contained in the broader network G.

Now let’s consider different ways that elements of a subset of N can be chosen. To begin,

let nodes posses exogenous, binary features called “attributes.” For any attribute, a node

either does or does not possess it.2 Now we can define two collection rules by which subsets

can be selected from the larger set:

Definition 3 (Random collection rule). Elements in subset S Ă A are selected by a random

collection rule if each element s P S was selected uniformly at random from A.3

A subset collected via a random collection rule was formed by random selection; alter-

natively, a subset can be formed because nodes possess some attribute of interest:

fact that membership in P introduces dependencies between nodes in P with respect to the network will
mechanically introduce dependencies between nodes in C with respect to the network. If N is large relative
to P YC, then dependencies introduced by membership in P do not mechanically introduce dependencies in
a randomly drawn C. In other words, these hypotheses could not be tested with samples of P and C such
that P Y C “ N . The derivation of hypotheses is cleanest when we assume |P | “ |C|, but the hypotheses
are still valid tests when |P | ă |C| (so long as |P Y C| is still small relative to |N |.

2Clearly there can be interesting attributes of nodes that are not binary. Continuous attributes, such as
length of time that a user’s Twitter account has been open, can be converted to binary ones with a cutoff
rule, such as “Twitter account older than 5 years.” The results do not require that the attribute be binary,
but their presentation is simplified with this assumption. Our attribute of interest, protest attendance, is
binary.

3The key part of this definition is the randomness, which means that selection is orthogonal to any
network feature. Whether elements are drawn from the whole set with probability 1

|A| or from a part that

excludes some other subset S1, resulting in probability 1
|AzS1|

, is unimportant.
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Definition 4 (Attribute collection rule). Elements in subset S Ă A are selected by an

attribute collection rule if each element s P S was selected from A because it possessed a

certain attribute.

Now let’s assign a collection rule to each of the subsets defined above. Suppose subset

C Ă N is formed via the random collection rule, and P Ă N is formed via an attribute

collection rule.

Lastly, we need a few more definitions to set up our analyses and establish scope. Call

Sa“1 the subset collected by including all nodes that possess attribute a, Sa“0 the complement

subset that lacks attribute a, and Sr a subset collected with the random rule that is the

same size as Sa“1. The fact that |Sr| “ |Sa“1| is important for the analyses that follow.4

Definition 5. Call an attribute “rare” if substantially fewer than half of the members of the

set of interest possess it. Specifically, |Sa“1| ăă |Sa“0|.

Our analyses will focus on rare attributes.5 This assumption allows us to collect both

the full set of nodes that possess the attribute as well as a random set of the same size while

still respecting the requirement that |Sa“1 Y Sr| ă |N |.

Ultimately, we are interested in learning whether an attribute is meaningful to the

network—whether it helps to delineates a meaningful social group or not. Let Nipgq refer to

i’s neighbors in network g and define the following possible characteristic of an attribute:

Definition 6. Call an attribute “socially irrelevant” if the attribute is orthogonal to nodes’

links. In other words, on average, for i P Sa“1,

#Nipg
Sa“1

q “ #Nipg
Sr

q

where Sr is a random subset of N the same size as Sa“1.

An attribute is socially irrelevant if an attribute-possessing node’s neighbors are just as

likely to be captured in a subset containing everyone possessing that attribute as they are

to be captured in a randomly-chosen subset. That is, if collecting on the attribute makes it

no more likely that a node with that attribute’s neighbor is also collected than collecting at

random does, then that attribute is socially irrelevant. For instance, we might imagine that

4Again, this assumption simplifies things but is not strictly necessary; the necessary assumption is that
|Sr| ě |Sa“1| and |Sr Y Sa“1| ă |N |.

5Assuming rareness simplifies many of the comparisons below, and is fitting for our attribute of interest,
protest attendance, which is rare among even eligible Twitter users in Paris.
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the attribute “having the letter ‘t’ appear at least three times in a Twitter user’s username”

is socially irrelevant. If we collected everyone that possesses this attribute in the set N , we

probably have not collected a meaningful social group. Collecting with this attribute was

as if we collected at random; the resulting social group would be equally without meaning.

Our interest is in separating social irrelevance from social relevance:

Definition 7. Call an attribute “socially relevant” if nodes are more likely than chance to

be linked to other nodes sharing that attribute. That is, on average, for i P Sa“1,

#Nipg
Sa“1

q ą #Nipg
Sr

q

where Sr is a random subset of N the same size as Sa“1.

An attribute is socially relevant if a person is more likely to have neighbors who possess

that attribute than chance. Collecting on a socially relevant attribute increases the likelihood

that a node’s neighbors are also included in the collection relative to collecting at random.

An attribute can vary in its social relevance based how much more likely than chance a

person is to have ties to others sharing that attribute. It will be useful to refer to the

strongest possible form of social relevance:

Definition 8. Call an attribute “perfectly socially relevant” if nodes are only linked to other

nodes sharing that attribute. Specifically,

@i P Sa“1, @j P Nipg
Sa“1

q, j P Sa“1.

When an attribute is perfectly socially relevant, all attribute-possessing nodes’ neighbors

also possess that attribute.

Our interest is in determining whether a particular rare attribute is socially relevant.

Specifically, our manuscript presents a theory for why the process that leads up to a protest

results in protest attendance being correlated across links—people exposed to others who

intend to protest are more likely to protest themselves. Stated a different way, our manuscript

presents a theory for why the attribute “attended the Charlie Hebdo protest” is socially

relevant. We want to derive hypotheses that would be true of subsets of nodes collected

on a rare, socially relevant attribute relative to a subset at least the same size collected at

random.

The specific hypotheses are derived in the next sections, but the logic underlying them

is as follows. For clarity, consider a rare attribute aperfect that is perfectly socially relevant.
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Call the subset of nodes that possess this attribute Pperfect. By definition, individuals in

Pperfect only have social ties to others in Pperfect. Now also consider a subset of nodes C

randomly selected from the rest of the set of interest, NzPperfect, which is the same size as

the subset of those that possess the attribute, i.e. |C| “ |Pperfect|.

The 2-degree subnetworks generated by these two subsets will differ in a few key ways. To

see one, focus on the nodes in N to whom nodes in each of these subsets can be connected.

Because Pperfect was collected based on a perfectly socially relevant attribute, the set of

nodes to whom nodes in this subset can be connected is also Pperfect. All ties of individuals

in Pperfect are also contained within Pperfect. Hence, the proportion of neighbors of any

i P Pperfect that are also contained in Pperfect is 1. Written formally,

1

|Pperfect|

ÿ

iPPperfect

#tj|j P Pperfect, j P Nipg
Pperfectqu

#tj|j P NipgPperfectqu
“ 1.

The same is not true of the randomly selected subset C; individuals in C can be connected

to any node in NzPperfect. Collecting only |C| of them at random means that the probability

of collecting any one neighbor of i P C in the subset C is

|C| ´ 1

|NzPperfect| ´ 1
,

which, by the assumption that |C Y Pperfect| ă |N |, is less than one.6 Hence, the proportion

of neighbors of anyone in C that are also contained in C is, in expectation, less than one,

and by implication, less than the proportion of neighbors of anyone in Pperfect also contained

in Pperfect.

1

|Pperfect|

ÿ

iPPperfect

#tj|j P Pperfect, j P Nipg
Pperfectqu

#tj|j P NipgPperfectqu
ą

1

|C|

ÿ

iPC

#tj|j P C, j P Nipg
Cqu

#tj|j P NipgCqu
.

(This is derived for the more general case of imperfectly socially relevant attributes below

as Hypothesis 1.) Now contrast this scenario with a new one in which the subset collected

6Here is where the assumption that |CYPperfect| ă |N | binds. If C “ NzPperfect, then |C|´1
|NzPperfect|´1 “ 1

and none of the differences we report below would hold. The rarer the attribute (and hence the farther
|C Y Pperfect| is from |N |, the starker the differences will be.
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with an attribute collection rule uses a rare but socially irrelevant attribute airrelevant (for

instance, having at least three ‘t’s in a username). Call this subset Pirrelevant, and once again

consider a randomly drawn subset from the attribute-less nodes NzPirrelevant of the same

size, so that |Pirrelevant| “ |C|. Because this attribute is socially irrelevant, the nodes to

whom this subset may be linked are not confined to Pirrelevant; instead, anyone in Pirrelevant

could be linked to anyone else in N . This means the probability that the randomly selected

set C contains any one neighbor of someone in C is

|C| ´ 1

|N | ´ 1
, (1)

and, since by definition a socially irrelevant attribute gives no information about social ties,

the probability that the as-if-randomly selected set Pirrelevant contains any one neighbor of

someone in Pirrelevant is

|Pirrelevant| ´ 1

|N | ´ 1
. (2)

Since, by assumption, |C| “ |Pirrelevant|, ratio 1 is equal to ratio 2. That implies that the

expected proportion of neighbors of those in Pirrelevant that are contained in Pirrelevant would

not, on average, differ from the expected proportion of neighbors of those in C contained in

C.7 Hence, we would expect

1

|Pirrelevant|

ÿ

iPPirrelevant

#tj|j P Pirrelevant, j P Nipg
Pirrelevantqu

#tj|j P NipgPirrelevantqu
“

1

|C|

ÿ

iPC

#tj|j P C, j P Nipg
Cqu

#tj|j P NipgCqu
.

In short, if attribute a really is a perfectly socially relevant attribute, many differences

in the subnetworks among Pperfect and C, gPperfect and gC , will mechanically follow that

would not if a were socially irrelevant. The same logic holds for imperfectly socially relevant

attributes; the differences are in the same direction, and the greater the social relevance and

the rarer the attribute, the starker the differences will be.

7And, if |C| ą |P |, we would expect the proportion of neighborhoods of those in C that also are contained
in C to be higher than that for Pirrelevant.
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1.1.1 Assumptions about paths and valuations

We will assume that if two nodes are linked in the network (here if one follows the other),

the link between them has non-zero weight:

Assumption 3: @ i, j P N , if di,j “ 1, then si,j ą 0.

This assumption implies that if di,j ă 8, then si,j ą 0: if there is a path from i to j in

network G, then the strength of that path is non-zero. This assumption is plausible given

that the creation of ties in a social network requires some action, which probably would not

be undertaken if the strength were exactly zero. This assumption simplifies the statement

of results below, though is not strictly necessary. We could allow zero-strength ties and, so

long as the distribution of tie strength values contains enough non-zero values and the zero

values are distributed sufficiently widely throughout the network, the hypotheses would still

follow.

Finally, the influence process in the article text implies that those who participated in a

protest valued it highly enough to do so and those who did not participate did not value it

highly enough. Hence, we will assume that the valuation held by those whom we observe to

have protested is positive:

Assumption 4: @ i P P, Vi ą 0 and for all i P C, Vi ă 0.

1.2 Intro to Proofs

The hypotheses we derive below and assess with our data test whether having participated in

the Charlie Hebdo protest is a socially-relevant node-level attribute. Section 1.1 above defines

social relevance and walks through the logic that underlies each of these hypotheses. In the

subsections that follow, we present the reasoning for why that particular comparison follows

from social relevance and the arguments of the theory presented in the manuscript. We

begin by presenting and deriving a hypothesis that is additional to those in the manuscript

text, and then derive the remaining four that do appear in the manuscript.

1.2.1 Density Hypothesis

An additional hypothesis follows from the model. This hypothesis is closely related to H1,

so we only present H1 in the article text.

We should expect to observe greater “density” in the network among P than in the

network among C. The subset of eligible participants that protested should have more
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of the total possible ties to others who protested than the same for a sample of eligible

participants that did not protest. Specifically, we expect

1

#P

ÿ

iPP

#tj|j P Nipg
P q, j P P u

#P
ą

1

#C

ÿ

iPC

#tj|j P Nipg
Cq, j P Cu

#C
. (3)

This expectation stipulates a difference in the distribution of individual densities: on

average, those who protested should differ from a subset of eligible participants who did

not protest with respect to the proportion of possible links present to others in the subset.

Intuitively, if protesters influence their direct ties to protest, protesters should be highly

connected to one another, more so than comparable people who apparently neither influenced

nor were influenced by direct ties to attend. This can be stated as our first hypothesis:

Density Hypothesis: The density of the protesters’ network, gP , is greater than the den-

sity of the eligible non-protesters’ network, gC (inequality 3).

Of course, if protesters are the type of Twitter users who have more direct ties in general,

we could observe the same relationship stipulated in the Density Hypothesis regardless of

whether influence-by-exposure was at play. In this sense, the Density Hypothesis is a weak

test and H1 is the stronger test.

1.2.2 Test of Density Hypothesis

Protesters Comparison t-stat Support
Density Hyp. 0.0044 (0.0075) 0.0003 (0.0009) 14.9 [log: 14.4] Y
H1 Prop. ties within 0.0040 (0.0063) 0.0004 (0.0017) 15.0 [log: 11.0] Y
H2 Prop. ties of ties within 0.0332 (0.0332) 0.0057 (0.0080) 22.2 [log: 35.0] Y

Table 1: Replication of Table 1 from article, including density hypothesis test. Standard
deviations in parentheses, t-statistic tests the null that values for protesters and the com-
parison set are the same. t-statistic on log-transformed data in square brackets. All three
hypotheses are supported with high statistical confidence.

1.3 Proof of Density Hypothesis

Proof. We will show that the influence process described in the article text implies a differ-

ence in the 2-degree subnetwork induced by protesters compared to the 2-degree subnetwork
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induced by a random sample of non-protesters in terms of density and the extent of ties to

others in the sample. Consider a random sample S of N that is small relative to N and the

2-degree subnetwork gS induced by S. For an individual i P S, there is an expected number

of his ties, NipGq, that are to others sampled in S. The proportion of other individuals in

S to whom i will have direct ties is withini,S “ #tj|j P S, j P NipGqu{#S, where within is

determined by G. Call the expected value of withini,S over i P S

withinS “
1

#S

ÿ

iPS

withini,S. (4)

If P and C were random samples from N , then for any node in P or C, withinP “

withinC “ withinS given G. Now consider the consequences of the influence process de-

scribed in the article text. A node in G that is directly tied to another is influenced by him

to join the protest if he values it highly enough. For any node i P P , by virtue of attending,

Vi ą 0. Therefore, according to the influence process, if one node is labeled “protester,”

a node to which it is directly tied is more likely to be labeled “protester.” Consequently,

withinP ą withinC . Since C and P are small relative to N , a random sample from N that

discards members of P will be close to a random sample of P without replacement.8 Fur-

thermore, Vi is independent of Vj when Vj ă 0. Then the result follows: withinP ą withinC .

This gives the Density Hypothesis: on average, withinP ą withinC , e.g.

1

#P

ÿ

iPP

#tj|j P Nipg
P q, j P P u

#P
ą

1

#C

ÿ

iPC

#tj|j P Nipg
Cq, j P Cu

#C
. (5)

1.4 Proof of Hypothesis 1

Proof. Hypothesis 1 relies on similar logic to the Density Hypothesis. Just as a random

sample from a network should contain some proportion of each sampled node’s direct ties

on average, so should a random sample contain some proportion of each sampled node’s

neighborhood on average. Call that expected proportion withinneighb
i,S “ #tj|j P S, j P

NipGqu{#tj|j P NipGqu. Because of the influence process, a node with label “protester” is

more likely to have neighbors with label “protester.” That is, the neighborhood of any node

in P is more likely to contain other members of P than the neighborhood around a node in

8As the set of nodes to discard from a random sample becomes vanishingly small relative to the population
from which a sample is drawn, the sample approaches a random sample without replacement.
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S would be likely to contain another member of S. Call the expected value of withinneighb
i,S

over i P S

withinneighb
S “

1

#S

ÿ

iPS

withinneighb
i,S . (6)

Then we have withinneighb
P ą withinneighb

S . By the same logic as above, since C is small, the

random sample C from NzP approximates a random sample from N without replacement.

Since Vi is independent of Vj when Vj ă 0, the result follows: withinneighb
P ą withinneighb

C ,

e.g.

1

#P

ÿ

iPP

#tj|j P P, j P Nipg
P qu

#tj|j P NipgP qu
ą

1

#C

ÿ

iPC

#tj|j P C, j P Nipg
Cqu

#tj|j P NipgCqu
. (7)

1.5 Proof of Hypothesis 2

Proof. The proof is almost identical to the proof of Hypothesis 2. Since Ei,jpdi,j “ 2, si,j ą

0q ą 0, and since the strength of all direct ties is non-zero, individuals are positively exposed

to their ties of ties. Then by the same logic as above, on average, nodes in P have a

larger proportion of their set of ties of ties included in the set P than nodes in C have

included in the set C. To be precise, call the expected proportion of ties of ties in a set

within2
i,S “ #tj|j P S, j P N2

i pGqu{#tj|j P N2
i pGqu. The expected value over all i in a

randomly drawn sample S is

within2
S “

1

#S

ÿ

iPS

within2
i,S. (8)

Then we have within2
P ą within2

S. By the same logic as above, since C is small, the random

sample from C from NzP approximates a random sample from N without replacement.

Since Vi is independent of Vj when Vj ă 0, result follows: within2
P ą within2

C , e.g.

1

#P

ÿ

iPP

#tj|j P P, j P N2
i pg

P qu

#tj|j P N2
i pg

P qu
ą

1

#C

ÿ

iPC

#tj|j P C, j P N2
i pg

Cqu

#tj|j P N2
i pg

Cqu
. (9)
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1.6 Proof of Hypotheses 3 and 4

Proof. Hypothesis 3 and Hypothesis 4 both rely on the same argument about strong ties

that is the first step of the proof. Let all ties in G be characterized as either “strong” or

“weak” such that if a tie from i to j is “strong” and a tie from i to k is “weak,” then that

si,j ą si,k. A randomly selected set S from N would contain some proportion of the strong

ties of S:

withinstrong
i,S “

#tj|j P S, j P NipGq, si,j “ strongu

#tj|j P NipGq, si,j “ strongu
. (10)

In expectation, this value in S would be:

withinstrong
S “

1

#S

ÿ

iPS

withinstrong
i,S . (11)

Recall from the assumptions of the influence process that Ei,jpdi,j “ 1, si,j ą 0q ą, and

that Ei,j is increasing in si,j when di,j “ 1. Furthermore, Vi is increasing in Ei,j so long as

Vj ą 0. Consequently, since Vi ą 0 @i P P , withinstrong
P ą withinstrong

S . By the logic above,

C approximates a random sample without replacement, and so withinstrong
P ą withinstrong

C .

Now we can state the hypotheses in terms of two operationalizations of tie strength. First,

for ij P G, assume that si,j “ strong if there exists a k such that ik P G and either jk P G

or kj P G. By this assumption, in general, for any node i, any triangle in a network provides

two strong ties incident to i: with respect to i, for any j, k P N such that ij P G, ik P G, and

either jk P G or kj P G, si,j “ strong and si,k “ strong. To simplify notation, let ijk P G

mean ij P G, ik P G, and either jk P G or kj P G. Now, any i, j, k P G such that ijk P G

is a set of i’s strong ties. If a set S were drawn at random from N , there would be some

proportion of a node’s sets of strong ties that would entail others in S,

withinstrong1

i,S “
#tijk P gS|j P S or k P Su

#tijk P gSu
, (12)

which, in expectation, would be

withinstrong1

S “
1

#S

ÿ

iPS

withinstrong1

i,S . (13)

Since influence induces correlations in the Vis of those connected by strong ties, then it must

be that withinstrong1

P ą withinstrong1

S . By the same sampling logic as above, it follows that
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withinstrong1

P ą withinstrong1

C and we have Hypothesis 3:

1

#P

ÿ

iPP

#tijk P gP |j P P or k P P u

#tijk P gP u
ą

1

#C

ÿ

iPC

#tijk P gC |j P C or k P Cu

#tijk P gCu
. (14)

Second, assume that a tie ij P G is strong if ji P G; that is, a tie is strong if it is reciprocated,

and it is weak if it is not reciprocated. On average, there is a number of reciprocated ties that

any node in N has in network G. In a random sample S, some number of i P S’s reciprocated

ties would be to other j P S. Call this number withinstrong2

i,S “ #tj|ij P G, ji P Gu, with

expected value over S

1

#S

ÿ

iPS

withinstrong2

i,S . (15)

Now, so long as #P “ #S, since influence induces correlations in the Vi of those connected

by strong ties, withinstrong2

P ą withinstrong2

S . And, by the same argument about sampling

used the above derivations, so long as #P “ #C, withinstrong2

P ą withinstrong2

C . This gives

us Hypothesis 4:

1

#P

ÿ

iPP

#tj|ij P gP , ji P gP , j P P u ą
1

#C

ÿ

iPC

#tj|ij P gC , ji P gC , j P Cu. (16)

The larger the difference between 1
#P

ř

iPP #tj|ij P gP , ji P gP , j P P u and 1
#C

ř

iPC #tj|ij P

gC , ji P gC , j P Cu, the more likely the difference will appear even when #C ą #P . In other

words, a conservative test of this hypothesis will be the case in which #C ą #P .

2 Additional Analyses and Robustness Checks

In the following sections, we consider alternative explanations that could undermine our

conclusions.

2.1 Sensitivity of Descriptive Statistics

Protesters have more ties on average on Twitter than users in the Paris comparison set. They

also have more than users in an additional comparison set drawn from France (described in

more detail in the next section). Figure 1 shows the distribution of the number of friends for

12



all three sets of Twitter users, and the same when the twenty largest values are excluded.

Although the means compress slightly, protesters still have substantially more ties than either

of the comparsion groups.

0 500 1500 2500

Protesters and Comparison Sets

Number of Ties

Protesters 
 (max: 63784 )

Paris Comp. 
 (max: 6740 )

France Comp. 
 (max: 69087 )

0 500 1500 2500

Exclude Top 20

Number of Ties

Protesters 
 (max: 3222 )

Paris Comp. 
 (max: 2011 )

France Comp. 
 (max: 2230 )

Figure 1: Distribution of the number of ties per user in the set of protesters, the Paris
comparison set and the France comparison set. The left plot shows the raw density for all
three; the right shows the densities for each, excluding the twenty largest values. Vertical
lines plot the distributions’ means.

Table 2 reports different summary statistics of the number of ties for users among

protesters and the two comparison sets. The maximum number of ties in the protester

set is substantially larger than the maximum in the Paris set, but not in the France set.

However, these large values are more of an anomaly to the France comparison set than to

the set of protesters: only 5% of the France comparison set have over 2, 000 ties, compared

to 8% of the protesters. The median value of ties, and the mean excluding the top twenty

values, are greater for protesters.

Figure 2 shows the same distribution for the number of ties of ties for all three groups.

Once again, excluding the twenty largest values compresses the means slightly (displayed

as vertical lines), but protesters have substantially more ties of ties on average (though the

maximum value in the France comparison set is larger).
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Mean Median Max Mean - top 20 Prop ą 2k
Protesters 833 410 63784 638 0.082
Paris 418 226 6740 355 0.027
France 656 298 69087 464 0.051

Table 2: Values for the set of protesters, the Paris comparison set and the France comparison
set. Mean - top 20 is the maximum value reported, excluding the 20 largest. Prop ą 2k is
the proportion of the sample with at least 2,000 ties.

0 100000 200000 300000

Protesters and Comparison Sets

Ties of Ties

Protesters 
 (max: 255674 )

Paris Comp. 
 (max: 218745 )

France Comp. 
 (max: 323461 )

0 100000 200000 300000

Exclude Top 20

Ties of Ties

Protesters 
 (max: 221035 )

Paris Comp. 
 (max: 179591 )

France Comp. 
 (max: 264415 )

Figure 2: Distribution of the number of ties of ties per user in the set of protesters, the Paris
comparison set and the France comparison set. The left plot shows the raw density for all
three; the right shows the densities for each, excluding the twenty largest values. Vertical
lines plot the distributions’ means.

Table 3 repeats the comparisons of Table 2 for ties of ties. Protesters in general have

more ties of ties, both on average, and at the median. The comparison holds when the

twenty largest values are excluded. As with the number of ties, the France comparison set

contains a higher maximum value of ties of ties, and here the proportion in the right tail is

larger for the France comparison set. In other words, the extreme values of ties of ties are

not greater among protesters, but the typical values– the mean and median– are.
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Mean Median Max No Top 20 Prop ą 2k
Protesters 134623 139944 255674 132007 0.102

Paris 85830 85808 218745 82936 0.008
France 117260 110651 323461 112747 0.139

Table 3: Comparisons of the set of protesters, the Paris comparison set and the France
comparison set in terms of ties of ties. Mean - top 20 is the maximum value reported,
excluding the 20 largest. Prop ą 200k is the proportion of the sample with at least 200,000
ties of ties.

Figure 3 shows the distribution of transitivity for protesters compared to the same for

the Paris and France comparison sets. Transitivity is computed as the ratio of weakly closed

triangles to which a node is incident to the total number of possible triangles to which a

node could be incident.

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
10

Transitivity

D
en
si
ty

Protesters
Paris Comp.
France Comp.

Figure 3: Distribution of transitivity for protesters, Paris comparison set and France com-
parison set. Vertical lines are means.
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2.2 Robustness to France Comparison Group

Table 4 replicates the main results using a comparison group collected from Twitter users

geo-located to be in France during the Charlie Hebdo protest but not present at the protest

in Paris. These users were selected based on their location but not based on their hashtags.

Unlike the other two samples, these users were not collected based on using the seven Charlie

Hebdo hashtags (see manuscript section 3). This section shows that all results hold when

using the comparison set from France instead of the comparison set from Paris.

Protesters FRANCE Comp. t-stat Reject
Prop. ties within 0.004 (0.008) 0.001 (0.002) 13.7 (log: 8.0) Y
Prop. ties of ties within 0.033 (0.033) 0.004 (0.011) 22.9 (log: 40.5) Y
Triangles within 0.011 (0.015) 0.002 (0.006) 15.0 (log: 8.1) Y
Recip. within 3.1 (5.77) .28 (.93) 13.2 (log: 12.6) Y

Table 4: Hypothesis tests using the France comparison group. t-stat tests the null that the
values are the same for the protesters and the comparison set. All hypotheses are supported.

Figure 4 shows the distribution of the proportion of ties within each of the groups for the

protesters and both comparison sets. The right plot zooms in to the mass of the distribution.

Protesters are a much more cohesive group: a much larger proportion of each protester’s ties

are to other protesters compared to the proportion of each member of the comparison set’s

ties that are to other members of each comparison set.

Protesters have many more ties within the group than either of the two comparison

groups do, as Figure 7 shows.

The same comparisons hold for the proportion of ties of ties within each set, regardless

of the comparison set. Figure 6 shows the distribution of the proportion of ties of ties within

each group both in full (left) and zoomed in (right).

Finally, the proportion of triangles in the protest set containing other protesters is larger

than the proportion of triangles in either of the comparison sets containing other individuals

in the comparison sets. Figure 8 shows the distributions.

Figure 9 shows that while many users in all sets have no strong ties, a much higher

proportion of users in the comparison sets have no strong ties..

It is reassuring that all results hold when we compare protesters to Twitter users in

France. We are also reassured by the extent to which the Paris and the France comparison

sets are similar to each other and are often more similar to each other than to the protesters.
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Figure 4: Proportion of each user’s ties that are to other members of the relevant set–
protesters to protesters, Paris comparison set to Paris comparison set, France comparison
set to France comparison set.

2.3 Robustness to Omitting Verified Accounts

This section addresses the potential concern that our analyses include all ties on Twitter,

including those to “verified accounts” which we would not expect to be important to an

influence-by-exposure process. Here we pull all verified accounts and replicate our results.

Table 5 replicates the main results, omitting all verified Twitter accounts. All comparisons

are robust to excluding verified accounts.

Protesters Comparison t-stat Reject
Prop. ties within 0.004 (0.007) 0.001 (0.002) 14.0 (log: 10.6) Y
Prop. ties of ties within 0.027 (0.028) 0.005 (0.008) 20.5 (log: 32.4) Y
Triangles within 0.013 (0.020) 0.002 (0.007) 14.3 (log: 7.4) Y
Recip. within. 2.8 (5.38) 0.15 (0.57) 13.5 (log: 13.8) Y

Table 5: Hypothesis tests with verified accounts omitted. t-stat tests the null that the values
are the same for the protesters and the comparison set.
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Figure 5: Proportion of respondents in each set– Protesters, Paris comparison, France
comparison– that have no ties to any other user in that set.
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Figure 6: Proportion of each user’s ties of ties that are to other members of the relevant set–
protesters to protesters, Paris comparison set to Paris comparison set, France comparison
set to France comparison set.
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Figure 7: Proportion of respondents in each set– Protesters, Paris comparison, France
comparison– that have no ties of ties to any other user in that set. The value is 0 for
Protesters and the Paris comparison set, and 1.6% for the France comparison set.
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Figure 8: Proportion of respondents’ triangles in each set– Protesters, Paris comparison,
France comparison– that entail at least one other user in that set.
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Figure 9: Proportion of respondents’ strong ties in each set– Protesters, Paris comparison,
France comparison.

Figures 10, 11, 12 and 13 replicate the results of the main article with verified accounts

removed.
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Figure 10: Proportion of ties among protesters and comparison sets with verified accounts
omitted.
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Figure 11: Proportion of ties of ties among protesters and among those in the comparison
sets with verified accounts omitted.
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Figure 12: Proportion of triangles among protesters and among those in the comparison sets
that entail others in the group, with verified accounts omitted.
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Figure 13: Proportion of strong ties, and incidence of strong ties among protesters and
members of the comparison sets, with verified accounts omitted.
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Figure 14: Geotagged tweets sent by protesters in the lifetime of their Twitter accounts

2.4 Mobility and Geolocation

This section presents some general information that speaks to the mobility of users in our

samples and to their tendency to geolocate. Figure 14 displays the geographic distribution

of tweets sent by protesters in the lifetime of their Twitter accounts. Figures 15 and 16 show

the same for users in the Paris and France comparison sets, respectively.

Clearly, the protesters (labeled attenders) are not a more geographically concentrated

group in terms of mobility; many Tweets are sent far from Paris. Furthermore, figure

17 constructs a measure of any geotagged Tweet’s distance to the centroid of all geotagged

Tweets. By this measure, protesters are a bit more mobile than members of either comparison

set.

Finally, figure 18 shows the box plots of geotagging activity by user in each of the three

sets. All three exhibit similar geotagging propensities. On average, users who attended the

protest geocode 11.6% of their Tweets (sd=.14) and users in the Paris control geocode 10%

of their Tweets (sd=.13).

2.5 Clustering by Accounts Followed

Figure 19 shows the results of a Latent Dirichlet Allocation decomposition based on accounts

followed. If users who are more politically active follow certain political or news accounts to a
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Figure 15: Geotagged tweets sent by users in the Paris comparison set in the lifetime of their
Twitter accounts

Figure 16: Geotagged tweets sent by users in the France comparison set in the lifetime of
their Twitter accounts
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Figure 17: Distribution of the distance from geotagged Tweets sent in users’ account lifetime
from the centroid of these Tweets.
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fig

Figure 18: Proportion of users’ Tweets that are geotagged in the lifetime of that user’s
Twitter account
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greater extent than users who are not politically active, and if protesters and non-protesters

sort based on level of political activity, then we should observe clusters of protesters separate

from clusters of non-protesters. Instead, Figure 19 shows no such clusters. We take this as

suggestive evidence that there is no clear difference in level of political activity between

protesters and the comparison set. If selection based on political activity is a threat to our

inferences, we are likely controlling for political activity by using a comparison set that is

similar to the protesters in level of political activity implied by their Twitter relationships.

Figure 19: LDA decomposition of the 68,074 most followed accounts. Users do not cleanly
separate into protester and non-protester clusters based on accounts that they follow.
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2.6 Potential Baseline Differences

Here we consider potential differences between the Protesters and the Comparison set that

may account for the differences in networks. First, we document the propensity to follow

verified accounts. We see similar tendencies to follow verified accounts across the three

groups, shown in Figure 20. To the extent that following verified accounts captures political

interest or social consciousness (these accounts include news organizations and politicians),

protesters are similar to the control sets.

Figure 20: Number of users following at least x verified accounts.

Next, we look at the extent to which users may vary in their activity on Twitter. It

could be that users with a certain gregarious or outgoing personality are more likely to be

friends (and hence to follow each other on Twitter), so that the clustering we observe among

Protesters is an artifact of this personality trait. To test for this, we look at all three sets’

Twitter activity between the massacre and the protest, and in the days immediately after.

Figure 21 shows that the Protesters and the Comparison set have similar patterns and

levels of Twitter activity, suggesting that Protesters are not merely more active on Twitter,

or more outgoing (to the extent that this personality trait is captured by tweeting). Figure

22 shows Twitter activity specifically about Charlie Hebdo. These tweets use one of the

hashtags about Charlie Hebdo. Here too, the Protesters and the Comparison set behave

similarly, further casting doubt on a difference in level of interest in political topics or current

events.
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Note also that the protesters and users in the Paris comparison set are much more similar

to one another than to the France comparison set. Selecting on the seven Charlie Hebdo

hashtags resulted in a comparison set very similar to the protesters in terms of political

interest, engagement with current events, sociability on Twitter, and gregariousness. Users

in the France comparison set, which was not collected based on the hashtags, look very

different in terms of these attributes.

Figure 21: Twitter activity of three sets in window of time including protest.

Figure 22: Twitter activity about Charlie Hebdo of three sets in window of time including
protest.

Finally, we consider possible evidence of differences based on which users tweeted which of

the seven Charlie Hebdo hashtags. Figure 23 shows that the protesters and the comparison

set used the hashtags in very similar proportions. If different hashtags pick up different

aspects of the issue of Charlie Hebdo, the distribution of interest in these aspects is very

similar across our two sets.
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Figure 23: Distribution of hashtag use.

2.7 Robustness to following Protesters in both sets

Next we compare the extent to which protesters have ties to protesters to the extent to which

non-protesters have ties to protesters. As expected, protesters have both a larger proportion

of their ties and of their ties of ties to other protesters.

Figure 24: Proportion of ties that are protesters.

2.8 Did the Protest Cause the Network Ties?

Our analyses assume that the Twitter network is a measure of the underlying social network

of potential protesters in the days leading up to the protest. Here we consider the possibility
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Figure 25: Proportion of ties of ties that are protesters.

that links between protesters were instead added to the network after the protest as a cause

of protesting together. This would generate the results we observe but would lead us to

misattribute the reason for them. While friendship ties (following relationships) are not

timestamped, the order in which they were added is available from the Twitter API. We

compare the rank of ties that are between protesters to the rank of ties that protesters have

to other users. Figure 26 shows that the distribution of ranks for these two types of ties is

very similar, making the creation of new protester-protester ties at one time following the

protest unlikely.

Figure 26: Comparing the rank of protester-protester ties to the rank of protester-
nonprotester ties. The similarity in distributions suggests that protester-protester ties were
not largely formed after the protest due to meeting and becoming friends at the protest.
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2.9 Direct Evidence of Exposure on Twitter

For our characterization of social theories of protest to hold, a person must be exposed

to her social ties’ sentiment toward the protest. We measure social ties using following

relationships on twitter, which we argue is a valid measure of underlying social networks.

While interactions on Twitter are only one of many possible channels of exposure to a social

tie, we can use the tweets that a user sends as a measure of the content to which followers

are exposed on Twitter. This is an incomplete test– if none of person i’s social contacts on

Twitter post content about an upcoming protest, this does not mean that person i is not

exposed to her social contacts’ views toward the protest. i may be exposed to these ties on

other social media platforms, or in real world interactions of various kinds, and so may learn

of their sentiment toward the protest through other means. If i’s social contacts do post

content on Twitter about the protest, then we know we are observing a source of potential

exposure.

We randomly sample 200 users from our Protesters set and manually classify the content

of Tweets that the user shares in the days leading up to the protest. Specifically, for each

user, we generate a page that looks like the Twitter feed of the user, and populate it with the

tweets that user sent during the three days before the Charlie Hebdo protest. Figure 27 shows

an example our replicated Twitter feeds. We then had two French-speaking undergraduate

students read each page and classify its content on the crowd sourcing platform CrowdFlower.

The coders were told that these were French accounts’ content from the days between the

Charlie Hebdo massacre and the protest, but were not told that these accounts sent Tweets

geocoded to be present at the protest. We asked coders whether the account contained any

tweets with certain content. When the coders disagree, we use the judgment of the coder

with the highest confidence score on CrowdFlower. The comparisons all hold if we restrict

attention to unanimous judgments.

Their coding reveals that 44% of the sampled accounts tweeted specifically about the

upcoming Charlie Hebdo protest (as opposed to merely tweeting about the issue of Charlie

Hebdo, which was true of 100% of the accounts by construction of the sample). Of the

accounts that tweeted specifically about the protest, 28% tweeted logistical information

about the protest, 20% tweeted about their personal plan to attend the protest, and 13%

tweeted an explicit encouragement of others to attend the protest. Given that twitter is far

from a person’s only source of exposure to her friends’ intentions toward a protest, that we

find direct evidence of opportunities for exposure in so many accounts on Twitter alone is

reassuring that the theory uses a plausible mechanism.
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Figure 27: Example of the replica of a user’s Twitter page generated from a user’s Tweets
between the massacre and the protest that coders saw when classifying Tweets.

Interestingly, when asked to make a guess about how likely it seemed that the user would

eventually attend the protest (again, without knowing that all users in this sample did in

fact attend), coders had the impression that more users might attend than the number of

users who explicitly tweeted about the protest. Coders felt that 64% of this sample had at

least an even chance of attending. Exposure may occur in subtle ways; a person may have
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influence on another’s valuation of the protest even if she does not explicitly say “I value

the protest highly.” Simply by engaging with the issues surrounding the protest in a credible

way, a person may signal to others the value of a protest.
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